
C++ Fundamentals
Elyse Cornwall

June 27th, 2023

Contributions made from previous CS106B Instructors

Announcements and Reminders

• Sign up for section by today at 5pm!
• Also, attend section this week

• Send OAE letters to Amrita and Elyse

• Assignment 0 due Friday at 11:59pm

• We’ll have our first attendance ticket in lecture today…

https://cs198.stanford.edu/cs198/auth/default.aspx

CS106B Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

CS106B Roadmap

Core
Tools

C++
Algorithmic

Analysis
Recursion

Using Abstractions Building Abstractions

Abstract Data
Structures

Object-Oriented
Programming

Memory
Management

Linked
Data

Structures

Advanced
Algorithms

What programming languages
have you used before?

Programming Language Popularity

Programming Language Popularity

Programming Language Popularity

What is C++?

• High performance programming language, based on C

• Object-oriented language (we’ll explore this later in our roadmap)
• “C with Classes”

• Huge! Complex!

Pros and Cons of C++

Pros

• C++ is fast
• Between 10 and 100 times

faster than Python!
• C++ is powerful

• Allows more control over your
computer’s resources

• C++ is popular
• Coding interviews, research,

industry

Pros and Cons of C++

Pros

• C++ is fast
• Between 10 and 100 times

faster than Python!
• C++ is powerful

• Allows more control over your
computer’s resources

• C++ is popular
• Coding interviews, research,

industry

Cons

• C++ is complex
• We’ll be using some

Stanford-specific libraries to
make the interface friendlier
(think abstraction)

• C++ can be dangerous
• We can make memory errors

and cause more severe
crashes!

Let’s look at some C++ code!

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

Including libraries allows us to use code that
was written elsewhere by somebody else

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

Directs user input / output to console

Standard input / output library

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

Compiler looks for a function called
main and starts program from there

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

Function bodies are enclosed within
“curly braces”

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

Code statements end in semicolons

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

This is how we print to the console for
the user to see

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

This is how we print to the console for
the user to see (more on that later)

Brief Detour: Console Output

• We use cout and << to print information to the user

• To start printing on a new line, we use endl

Brief Detour: Console Output

• We use cout and << to print information to the user

• To start printing on a new line, we use endl

Brief Detour: Console Output

• We use cout and << to print information to the user

• To start printing on a new line, we use endl

Brief Detour: Console Input

• We use getLine() with a prompt to get information from the user

• getLine() returns a string, which we often store in a variable

Brief Detour: Console Programs

• In combination, cout and getLine() let us communicate with

the user via the console

• Programs that do this are called “console programs”

Our First C++ Program

#include "console.h"
#include <iostream>
using namespace std;

int main() {
 cout << "Hello, World!" << endl;
 return 0;
}

The main function returns 0 to
indicate success

Variables and Types

Variables

• We use variables to store information in our programs

• Variables have a type and a name

int enrollment;

string className;

Variables

• We use variables to store information in our programs

• Variables have a type and a name

int enrollment;

string className;

We name variables using “camelCase” capitalization

Variable Types

• When we declare a variable, we must specify its type

• A variable cannot change type

int enrollment; // create integer variable
enrollment = 190; // set its value to 190
enrollment = 191; // reassign its value to 191

Variable Types

• When we declare a variable, we must specify its type

• A variable cannot change type

int enrollment; // create integer variable
enrollment = 190; // set its value to 190
enrollment = 191; // reassign its value to 191

Before we set its value, this variable holds “garbage” data. It’s
not initialized to 0 or cleared out for us.

Variable Types

• When we declare a variable, we must specify its type

• A variable cannot change type

int enrollment; // create integer variable
enrollment = 190; // set its value to 190
enrollment++; // reassign its value to 191

Variable Types

• When we declare a variable, we must specify its type

• A variable cannot change type

int enrollment; // create integer variable
enrollment = 190; // set its value to 190
enrollment++; // reassign its value to 191

We only specify the type when first declaring the variable

Variable Types

• When we declare a variable, we must specify its type

• A variable cannot change type

int enrollment; // create integer variable
enrollment = 190; // set its value to 190
enrollment = “full”; // ERROR!

C++ Types

Numbers

• int, long // 100
• float, double // 3.14

Text

• char, string // ‘a’, “apple”

Booleans

• bool // true, false

Attendance ticket: complete by next class

What is the value stored in the variable
mystery after the following two lines of code
execute?

int mystery = 4;
mystery = 12;

Enter your answer on Gradescope by next class
(SCPD students have until Sunday 11:59pm)

https://www.gradescope.com/courses/553508

Functions, Parameters, and
Returns

Functions

Parameters ReturnFunction

Parameters and Returns

• Parameters: what information needs to be given to this function

when it’s called?

• Return: what information should this function give back to

whoever called it?
• Often the result of a computation or the “final answer”

• Some functions don’t have parameters or returns

Example: function that sums two numbers

Parameters ReturnFunction

Two numbers Their sum

Defining Functions in C++

• Choose a function name
• We use camelCase just like variable names

• Define the name and type of any parameters

• Define the return type
• Return type is void if the function doesn’t return anything

int sum(int val1, int val2);

Defining Functions in C++

• Choose a function name
• We use camelCase just like variable names

• Define the name and type of any parameters

• Define the return type
• Return type is void if the function doesn’t return anything

int sum(int val1, int val2);

Defining Functions in C++

• Choose a function name
• We use camelCase just like variable names

• Define the name and type of any parameters

• Define the return type
• Return type is void if the function doesn’t return anything

int sum(int val1, int val2);

Defining Functions in C++

• Choose a function name
• We use camelCase just like variable names

• Define the name and type of any parameters

• Define the return type
• Return type is void if the function doesn’t return anything

int sum(int val1, int val2);

Defining Functions in C++

• Choose a function name
• We use camelCase just like variable names

• Define the name and type of any parameters

• Define the return type
• Return type is void if the function doesn’t return anything

int sum(int val1, int val2) {
int result = val1 + val2;
return result;

}

Function Order

• The order in which functions are defined matters in C++

• You cannot call a function before it’s been defined or declared

int sum(int val1, int val2) {
 int result = val1 + val2;
 return result;
}

int main() {
 int mySum = sum(4, 5);
 cout << mySum << endl;
 return 0;
}

We define sum here

Before we call it down here

 ✅

Function Order

• The order in which functions are defined matters in C++

• You cannot call a function before it’s been defined or declared

int main() {
 int mySum = sum(4, 5);
 cout << mySum << endl;
 return 0;
}

int sum(int val1, int val2) {
 int result = val1 + val2;
 return result;
}

We call sum here

But we don’t define it until
down here… ERROR

 ❌

Function Order

• The order in which functions are defined matters in C++

• You cannot call a function before it’s been defined or declared

int sum(int val1, int val2);

int main() {
 int mySum = sum(4, 5);
 cout << mySum << endl;
 return 0;
}

int sum(int val1, int val2) {
 int result = val1 + val2;
 return result;
}

Function declaration for sum

Function definition for sum,
can be written later

 ✅
All good, as long as the declaration
happens before we call sum

What gets printed? 👥
int doubleValue(int x) {

x *= 2;

return x;

}

int main() {

int myValue = 5;

int result = doubleValue(myValue);

cout << "myValue: " << myValue << " ";

cout << "result: " << result << endl;

return 0;

}

myValue: ?? result: ??

What gets printed?

int doubleValue(int x) {

x *= 2;

return x;

}

int main() {

int myValue = 5;

int result = doubleValue(myValue);

cout << "myValue: " << myValue << " ";

cout << "result: " << result << endl;

return 0;

}

myValue: 5 result: 10

What gets printed?

int doubleValue(int x) {

x *= 2;

return x;

}

int main() {

int myValue = 5;

int result = doubleValue(myValue);

cout << "myValue: " << myValue << " ";

cout << "result: " << result << endl;

return 0;

}

myValue: 5 result: 10

Caller function

Callee function

Passing by Value

• By default, we pass parameters to functions by value

• This means the callee function gets a copy of our variable

• Changes made to that parameter variable in the callee function

won’t affect our variable in the caller function

Passing by Value

• By default, we pass parameters to functions by value

• This means the callee function gets a copy of our variable

• Changes made to that parameter variable in the callee function

won’t affect our variable in the caller function

We’ll learn another way to pass
parameters later on!

Control Flow

Way to Control the Flow

• Conditionals (if/else)

• Loops (for/while)

Way to Control the Flow

• Conditionals (if/else)

• Loops (for/while)

• These are used with a boolean expression:

Conditionals

if (condition) {

// code to execute if condition is true

}

Conditionals

if (condition) {

// code to execute if condition is true

}
Note this syntax!
We put the condition in parentheses and
the conditional body in curly braces.

Conditionals

if (condition) {

// code to execute if condition is true

} else {

// code to execute if the condition is false

}

Conditionals

// assuming age variable is already defined

if (age < 12) {

 cout << "Eligible for kids meal.";

} else {

 cout << "Must use regular menu.";

}

Conditionals

// assuming age variable is already defined
if (age < 12) {

cout << "Eligible for kids meal.";
} else if (age > 65) {

cout << "Eligible for senior discount.";
} else {

cout << "Must use regular menu.";
}

While Loops

• “While this condition is true, do this”

• Use when you don’t know how many times you want to repeat

while (condition) {

// code to repeat while condition is true

}

For Loops

• Use when you know how many times you want to repeat

• Typical for loop uses int counter i that starts at 0:

for (int i = 0; i < 10; i++) {

cout << i << endl;

}

For Loops

• Use when you know how many times you want to repeat

• Typical for loop uses int counter i that starts at 0

• More generally, for loops take on this structure:

for (initialization; condition; update) {

// code to be repeated

}

For Loops

• Use when you know how many times you want to repeat

• Typical for loop uses int counter i that starts at 0

• More generally, for loops take on this structure:

 initialization; condition; update

for (int i = 10; i <= 100; i += 10) {

cout << i << endl;

}

For Loops

• Use when you know how many times you want to repeat

• Typical for loop uses int counter i that starts at 0

• More generally, for loops take on this structure:

 initialization; condition; update

for (int i = 10; i <= 100; i += 10) {

cout << i << endl;

} 👥 Talk to your neighbor: what gets printed?

For Loops

• Use when you know how many times you want to repeat

• Typical for loop uses int counter i that starts at 0

• More generally, for loops take on this structure:

 initialization; condition; update

for (int i = 10; i <= 100; i += 10) {

cout << i << endl;

}

Let’s write a program!
Try implementing with a while loop, then a for loop!

